199 research outputs found

    Highly charged ions: optical clocks and applications in fundamental physics

    Full text link
    Recent developments in frequency metrology and optical clocks have been based on electronic transitions in atoms and singly charged ions as references. These systems have enabled relative frequency uncertainties at a level of a few parts in 101810^{-18}. This accomplishment not only allows for extremely accurate time and frequency measurements, but also to probe our understanding of fundamental physics, such as variation of fundamental constants, violation of the local Lorentz invariance, and forces beyond the Standard Model of Physics. In addition, novel clocks are driving the development of sophisticated technical applications. Crucial for applications of clocks in fundamental physics are a high sensitivity to effects beyond the Standard Model and Einstein's Theory of Relativity and a small frequency uncertainty of the clock. Highly charged ions offer both. They have been proposed as highly accurate clocks, since they possess optical transitions which can be extremely narrow and less sensitive to external perturbations compared to current atomic clock species. The selection of highly charged ions in different charge states offers narrow transitions that are among the most sensitive ones for a change in the fine-structure constant and the electron-to-proton mass ratio, as well as other new physics effects. Recent advances in trapping and sympathetic cooling of highly charged ions will in the future enable high accuracy optical spectroscopy. Progress in calculating the properties of selected highly charged ions has allowed the evaluation of systematic shifts and the prediction of the sensitivity to the "new physics" effects. This article reviews the current status of theory and experiment in the field.Comment: 53 pages, 16 figures, submitted to RM

    Magnetic-dipole transition probabilities in B-like and Be-like ions

    Full text link
    The magnetic-dipole transition probabilities between the fine-structure levels (1s^2 2s^2 2p) ^2P_1/2 - ^2P_3/2 for B-like ions and (1s^2 2s 2p) ^3P_1 - ^3P_2 for Be-like ions are calculated. The configuration-interaction method in the Dirac-Fock-Sturm basis is employed for the evaluation of the interelectronic-interaction correction with negative-continuum spectrum being taken into account. The 1/Z interelectronic-interaction contribution is derived within a rigorous QED approach employing the two-time Green function method. The one-electron QED correction is evaluated within framework of the anomalous magnetic-moment approximation. A comparison with the theoretical results of other authors and with available experimental data is presented

    Closed-cycle, low-vibration 4 K cryostat for ion traps and other applications

    Get PDF
    In-vacuo cryogenic environments are ideal for applications requiring both low temperatures and extremely low particle densities. This enables reaching long storage and coherence times for example in ion traps, essential requirements for experiments with highly charged ions, quantum computation, and optical clocks. We have developed a novel cryostat continuously refrigerated with a pulse-tube cryocooler and providing the lowest vibration level reported for such a closed-cycle system with 1 W cooling power for a <5 K experiment. A decoupling system suppresses vibrations from the cryocooler by three orders of magnitude down to a level of 10 nm peak amplitudes in the horizontal plane. Heat loads of about 40 W (at 45 K) and 1 W (at 4 K) are transferred from an experimental chamber, mounted on an optical table, to the cryocooler through a vacuum-insulated massive 120 kg inertial copper pendulum. The 1.4 m long pendulum allows installation of the cryocooler in a separate, acoustically isolated machine room. In the laser laboratory, we measured the residual vibrations using an interferometric setup. The positioning of the 4 K elements is reproduced to better than a few micrometer after a full thermal cycle to room temperature. Extreme high vacuum on the 101510^{-15} mbar level is achieved. In collaboration with the Max-Planck-Intitut f\"ur Kernphysik (MPIK), such a setup is now in operation at the Physikalisch-Technische Bundesanstalt (PTB) for a next-generation optical clock experiment using highly charged ions

    Optical spectroscopy of complex open 4dd-shell ions Sn7+^{7+}-Sn10+^{10+}

    Get PDF
    We analyze the complex level structure of ions with many-valence-electron open [Kr] 4dmd^\textrm{m} sub-shells (m\textrm{m}=7-4) with ab initio calculations based on configuration-interaction many-body perturbation theory (CI+MBPT). Charge-state-resolved optical and extreme ultraviolet (EUV) spectra of Sn7+^{7+}-Sn10+^{10+} ions were obtained using an electron beam ion trap. Semi-empirical spectral fits carried out with the orthogonal parameters technique and Cowan code calculations lead to 90 identifications of magnetic-dipole transitions and the determination of 79 energy ground-configuration levels, questioning some earlier EUV-line assignments. Our results, the most complete data set available to date for these ground configurations, confirm the ab initio predictive power of CI+MBPT calculations for the these complex electronic systems.Comment: 18 pages, 5 figure

    State-resolved measurements of single-electron capture in slow Ne7+- and Ne8+-helium collisions

    No full text
    Single-electron capture in collisions of 9 keV x q Ne8+ and Ne7+ ions with He has been studied using cold-target recoil-ion momentum spectroscopy. With an improved apparatus a longitudinal momentum resolution of 0.07 au has been achieved. This momentum component is directly proportional to the difference in the binding energy of the active electron between the final and the initial state. For the first time state- resolved differential cross sections have been determined with respect to the main quantum number, subshell level and spin state of the captured electron. A comparison with recent theoretical results for energy levels in Be-like Ne is given

    Decay rate measurement of the first vibrationally excited state of MgH+^+ in a cryogenic Paul trap

    Full text link
    We present a method to measure the decay rate of the first excited vibrational state of simple polar molecular ions being part of a Coulomb crystal in a cryogenic linear Paul trap. Specifically, we have monitored the decay of the ν|\nu=1,J1,J=1X1 \rangle_X towards the ν|\nu=0,J0,J=0X0 \rangle_X level in MgH+^+ by saturated laser excitation of the ν|\nu=0,J0,J=2X2 \rangle_X-ν|\nu=1,J1,J=1X1 \rangle_X transition followed by state selective resonance enhanced two-photon dissociation out of the ν|\nu=0,J0,J=2X2 \rangle_X level. The technique enables the determination of decay rates, and thus absorption strengths, with an accuracy at the few percent level.Comment: 5 pages, 4 figure

    XUV frequency comb production with an astigmatism-compensated enhancement cavity

    Get PDF
    We have developed an extreme ultraviolet (XUV) frequency comb for performing ultra-high precision spectroscopy on the many XUV transitions found in highly charged ions (HCI). Femtosecond pulses from a 100 MHz phase-stabilized near-infrared frequency comb are amplified and then fed into a femtosecond enhancement cavity (fsEC) inside an ultra-high vacuum chamber. The low-dispersion fsEC coherently superposes several hundred incident pulses and, with a single cylindrical optical element, fully compensates astigmatism at the w0 = 15 µm waist cavity focus. With a gas jet installed there, intensities reaching ∼ 1014 W/cm2 generate coherent high harmonics with a comb spectrum at 100 MHz rate. We couple out of the fsEC harmonics from the 7th up to the 35th (42 eV; 30 nm) to be used in upcoming experiments on HCI frequency metrology
    corecore